Главная Стандартизация Метрология в белом халате


Метрология в белом халате

Метрология - Стандартизация

метрология в белом халате

Природа отлично сконструировала наш организм. Человек — это комплекс сложнейших самонастраивающихся систем, отлично приспосабливающихся к окружающей среде. Наше тело обладает громадными, до конца еще неосознанными резервами.

И все же, с другой стороны, человек — хрупкое создание, выходящее из строя себе подобных из-за какой-нибудь сотни миллиампер электрического тока в области сердца, из-за повышения температуры тела на какие-нибудь 5°С или из-за десятка вредных молекул. Поэтому медицина всегда будет играть важную роль в нашей жизни.

До нашего времени медицина носила эмпирический характер, опираясь на многовековые случайные наблюдения. И сейчас еще в отношении строгого научного обоснования медицине далеко до физики или химии. Но в наши дни техника оказывает врачу-практику и медику-исследователю неоценимую помощь. Современные медицинские средства, очень точные и сложные внутри,' в эксплуатации просты, надежны и „разумны благодаря встроенным микропроцессору или микроЭВМ. Медицинские установки и приборы в большинстве случаев имеют нормированные метрологические характеристики и, следовательно, являются средствами измерений.

Направление общей метрологии, отвечающее за единство и достоверность результатов измерений в медицине, получило название медицинской метрологии. Испытания, аттестации и поверки медицинских средств измерений — ответственная и сложная работа. Ответственная — потому что от ее качества зависит здоровье миллионов людей. Сложная — потому что все новейшие достижения физики, электроники и других наук начали быстро внедряться в медицинскую практику.

Еще Марат, прославленный Великой французской революцией, использовал при лечении больных электричество. Ведь по профессии он был физиком и врачом, Медиком был и Гильберт, который ввел в науку само понятие „электричество . А сейчас электронная аппаратура не только лечит, выполняет анализы — исследования, но и помогает ставить диагноз, заболевания. Чем выше точность медицинских измерений, тем больше достоверность результатов диагностики.

Какие только высокоточные методы исследований ни применяются в диагностической аппаратуре! Оптические, радиоиммунные, иммуннолюми-

несцентные, иммунноферментные. .. Но особенно интересен и перспективен „машинный диагноз , который ставит медицинская диагностическая экспертная ИИС на основании результатов исследований. Этот диагноз впитал в себя опыт десятков лучших медиков, чьи знания о болезнях хранятся в памяти ЭВМ.

Экспертная ИИС, разработанная в Институте кибернетики АН УССР , ориентирована также на прогнозирование хода болезни при различных методах лечения. Союз медицины, измерительной и вычислительной техники стал возможен благодаря объединению усилий разных специалистов: медиков, кибернетиков, электронщиков, математиков, метрологов, психологов, социологов. Стандартизация и унификация методов медицинских исследований и метрологического обеспечения различных медицинских служб приводит также к тесному международному сотрудничеству медицинских работников.

Вот еще один пример диагностической ИИС, разработанной содружеством биофизиков, инженеров и математиков. Она создана в ЦНИИ рефлексотерапии и отличается тем, что в нее не нужно вводить результаты анализов. Система сама получает информацию о состоянии здоровья человека необычным способом: измеряет электрические характеристики так называемых биологически активных точек (точек акупунктуры) на коже человека. Их у человека более 700. Диагностической системе достаточно обследовать до 100 таких точек, чтобы по их характеристикам создать картину функционального состояния больного или его отдельных органов, сравнить ее с соответствующей хранящейся в памяти ЭВМ „образцовой кривой здорового человека и поставить диагноз.

Это сложное медицинское средство измерений при массовом профилактическом обследовании легко выявляет больных сердечно-сосудистыми заболеваниями, бронхиальной астмой и других. Оно эффективно и при профессиональных осмотрах шоферов, операторов и т. д.

Но не будем забывать, что достоверность результатов работы такого помощника врача целиком зависит от точности измерений аномальных свойств активных точек и от точности „образцовой кривой . Поэтому медицинские средства измерений, как и технические, при выпуске из производства подвергаются тщательному метрологическому исследованию — аттестации, если выпускаются единичные образцы, или государственным испытаниям — если изделие должно стать серийным. В процессе эксплуатации система должна периодически поверяться и отправляться на ремонт, если какая-либо из ее реальных метрологических характеристик не вписывается в норму. После ремонта поверка средств измерений также является обязательной.

Напомним еще и о том, что вся документация на средство измерений, начиная с технического предложения и задания, тоже тщательно проверяется и корректируется метрологами. Если будущий прибор не обеспечен метрологически, то есть не имеет средств поверки, он выпускаться не будет. В „Инструкции по эксплуатации у него должен быть раздел „Поверка прибора , в котором указываются средства поверки, ее методика и периодичность. Обобщающие сведения о качестве приборов данного вида и качестве их метрологического обеспечения приводятся в стандартах.

Вернемся, однако, к наиболее интересным примерам применения средств измерительной техники в медицине. В качестве первой иллюстрации используем успевший стать традиционным в нашей книге магнитометр.

Магнитные поля — постоянные, синусоидальные, пульсирующие и им - < пульсные — с каждым годом все шире применяются при лечении радикулитов, ожогов, переломов. Магнитное поле способно эффективно снимать боли, но при условии точной дозировки его параметров. А параметры серийной магнитотер*апевтической аппаратуры, например, типа „Полюс , настроенной и градуированной на заводе-изготовителе, изменяются при транспортировке и при эксплуатации в больницах и поликлиниках. Для метрологического обеспечения „Полюсов в МИФИ разработан универсальный малогабаритный автоматизированный магнитометр на современной микроэлектронной базе. Он позволяет достаточно просто измерить индукцию и другие параметры магнитного поля в той точке тела, на которую воздействует магнитное поле, проверить и откалибровать лечебную аппаратуру.

Во ВНИИОФИ создан прибор „Ритм для лазеропунктуры. Сконструированный в небольшом чемоданчике, прибор сам находит по максимуму электрического потенциала активную точку и по стекловолоконному жгуту пускает в нее импульс света от портативного лазера. По сравнению с иглами лазер более удобен: его луч безболезнен, не требует стерилизации. Лазеропунктурой медики успешно лечат в ряде клиник нашей страны радикулиты, артриты, астму, кожные заболевания. Нередко этим методом излечиваются   неподдающиеся   другим   средствам   аллергические   заболевания.

В последние годы воздействие лазерным светом низкой интенсивности широко используется как новый, весьма эффективный физиотерапевтический метод лечения различных заболеваний, особенно воспалительного характера (заболевания костей суставов, пульпиты и т. д.). При такой лазеротерапии используется красный свет гелий-неоновых лазеров с облучением не только точек акупунктуры, но и при общем или местном световом воздействии.

Лазеры с большими мощностями световой энергии на выходе нашли применение в хирургии, онкологии, офтальмологии. „Световой нож оставляет абсолютно сухие, бескровные разрезы на теле человека или животного. Луч лазера оплавляет сосуды, кровь в ране свертывается, а обнаженное место стерилизуется. Лазерный шов заживает гораздо быстрее. Но все эти преимущества лазерных хирургических установок „Скальпель , „Ромашка и других сказываются только при условии их надежного мет­рологического обеспечения, точной дозировки интенсивности и времени действия целительного света.

Дозированное лазерное излучение заживляет трофические язвы, ожоги, открытые раны. Система лазерной голографии используется для точной (до 0,1 мкм) подгонки протезов некоторых костей.

. . .Заглянуть внутрь живого организма без хирургического вмешательства медикам раньше помогал только рентген. Но рентгеновский снимок изображает объект только в одной плоскости. Развитие рентгеновской и вычислительной техники привело в последние годы к созданию вычисли-

тельного томографа, снабжающего врача во много раз большей объемной информацией при меньшей дозе облучения больного.

Принцип работы томографов таков. Исследуемый внутренний орган (мозг, печень, почки, поджелудочная железа и т. д.) просвечивается узконаправленными рентгеновскими лучами под разными углами таким образом, чтобы все лучи лежали в заданной плоскости сечения. Интенсивность каждого луча на выходе органа измеряется специальными датчиками - детекторами. Любые уплотнения или полости сказываются на интенсивности выходных лучей. Так производятся сотни тысяч измерений только для одного сечения. Вручную их пришлось бы обрабатывать несколько лет. Мини-ЭВМ, входящая в состав вычислительного томографа, обрабатывает результаты просвечивания множества сечений органа за несколько десятков минут. А потом может мгновенно выдать из памяти на экран дисплея цветной „срез органа в любой заданной врачом плоскости, выделив ткани, плотность которых отличается всего на 1 %. Отчетливо диагностируются даже полусантиметровые образования.

На примере томографии прекрасно демонстрируется роль математических методов обработки информации в деле повышения точности средств измерений. Разработанные советскими учеными под руководством академика А.Н. Тихонова алгоритмы дали возможность в несколько раз повысить точность томографов. При этом аппаратная часть, число измерений и время обследования больных не изменились. Достоверность же диагноза повысилась.

Метод томографии может использоваться в сочетании не только с рентгеном, но и с ультразвуком, с регистрацией тепловых или магнитных полей. Не исключено, что рентгеновский луч вообще будет вытеснен из томографии благодаря использованию эффекта ядерно-магнитного резонанса.

Интенсивно развивается „компьютерная хирургия . Если врач отчетливо „видит больной орган, ему не всегда требуется производить сложную операцию. Становятся обычными прицельные пункции, введение дренажа и другие методы лечения без скальпеля.

Больные, ранее уходившие после тяжелых операций на инвалидность, теперь  через   пару  недель  лечения  здоровыми   возвращаются  на работу.

. . .Интересно, что компьютерные томографы с таким же успехом могут применяться и для неразрушающего контроля качества промышленных материалов.

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Учёные первооткрыватели:

Армстронг, Генри Эдвард

News image

Генри Эдуард Армстронг (англ. Henry Edward Armstrong; 6 мая 1848 — 13 июля 1937) — английский химик. Член Лондонского королевского об...

Рацебург, Юлиус Теодор Кристиан

News image

Юлиус Теодор Кристиан Рацебург (нем. Julius Theodor Christian Ratzeburg, 16 февраля 1801—24 октября 1871, Берлин), знаменитый немецкий энтомолог, основатель учения о ...

Авторизация



Единицы измерений:

Гигабайт

News image

Гигабайт  (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартных (8-битным) байтов или 1000 мегабайтам. Неправильность названия Читая нижеизложенный те...

Единицы измерения количества информации

News image

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как од...

Ом

News image

Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает на...

Атмосфера (единица измерения)

News image

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана. Существуют две примерно равные др...

Открыватели:

Ал-Хорезми

News image

Мухаммад ибн Муса Хорезми (перс. محمد بن موسی خوارزمی, Mohammad ebne Mūsā Khwārazmī, Хорезм, ок. 783 — ок. 850) — великий математик, астроном и географ, ос...

Универсальный конвертер
Conversion Type:
Quantity:

converts to:

Construction Unit converter provided by: EcoLog Homes

Интересные факты:

Таблица Менделеева

News image

В конце августа 1875 г. в кабинет акад. Вюрца входит его ученик, молодой французский химик Лекок-де-Буабодран. н долго не решается об...

О звуке

News image

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его не...

Эйнштейн и квантовая теория света

News image

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных ча...

Как происходит кристаллизация жидкости

News image

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ...

Атом и время

News image

Трудно себе представить более простое и вместе с тем более сложное понятие, чем время. Старая пословица говорит: «нет ничего в ми...

Ньютон и Марат о притяжении лучей света

News image

Что такое свет?— На этот вопрос Ньютон, очень много поработавший над изуче­нием световых явлений, отвечал так: свет — это поток бы...