Неисключенные остатки
Метрология - Предметная область метрологии |
Неисключенные остатки систематических погрешностей имеют место при любом, даже самом тщательном выявлении и исключении систематических составляющих. Поскольку далеко не всегда удается выявить вид зависимости аргумент-погрешность, а в ряде случаев неизвестными остаются и сами значения аргументов, в результатах измерений всегда присутствуют неисключенные систематические погрешности, которые в соответствии с предлагаемой классификацией относятся к погрешностям неопределенным.
В принципе эти погрешности могут быть выявлены и исключены (как систематические), однако иногда они остаются невыявленными из-за сложности технического решения такой задачи (малые значения погрешностей, сложные закономерности их изменения и ограниченность информации). В подобных случаях необходимо оценивать предельные значения этих погрешностей или их порядок. Если измерения характеризуются наличием нескольких неисключенных остатков систематических погрешностей, для расчета результирующего («суммарного») значения неисключенных систематических погрешностей применяют аппарат теории вероятностей и математической статистики, в силу сходства механизмов формирования ансамбля этих погрешностей и случайных величин (допущение о самопроизвольной рандомизации).
Применение этого математического аппарата тем более оправдано в случаях, когда систематическая погрешность отдельной реализации является случайной величиной в ансамбле однородных событий. Например, систематическая погрешность конкретной меры массы (гири) является случайной для партии мер одного номинала и одного класса точности. Предельное значение (граница) такой погрешности может быть определена как граница поля допуска меры.
Проведенный анализ позволяет оценить правомочность применения стохастического подхода к таким детерминированным величинам, как неисключенные систематические погрешности. Статистическая обработка ансамбля неисключенных систематических составляющих приводит к появлению таких парадоксальных оценок, как значение среднего квадратического отклонения систематической составляющей погрешности и связанные с ним предельные значения или доверительные границы неисключенных остатков систематической погрешности с указанием доверительной вероятности, а также качественные оценки (принятая аппроксимация) закона распределения. Методы выявления и оценки таких погрешностей описаны в соответствующем модуле. Если полученные оценки значений неисключенных систематических погрешностей соизмеримы со случайными составляющими, расчет «суммарного» значения неисключенных остатков систематических погрешностей и учет их совместного со случайными составляющими влияния на результаты измерений должен осуществляться с применением специального аппарата математической обработки, который приведен в ГОСТ 8.207.
Неисключенными систематическими составляющими, значения которых существенно меньше случайных погрешностей (Ds < 0,8s), пренебрегают. Такие погрешности относят к пренебрежимо малым составляющим погрешности измерения (правомерно не исключенным остаткам систематических погрешностей). Принято считать, что их наличие не вносит существенных искажений в результаты статистической обработки экспериментальных данных. В подобных случаях результаты измерений, содержащие наряду со случайными составляющими неисключенные остатки систематических погрешностей, часто подвергают обычной статистической обработке, не отделяя погрешности друг от друга.
Общеприняты и практически непротиворечивы классификации погрешностей измерений по используемым формам выражения (рисунок 5.7). Фактически это классификация не самих погрешностей измерений, а именно форм их выражения.
Абсолютные погрешности выражают в единицах измеряемой величины, а относительные, которые представляют собой отношение абсолютной погрешности D к значению измеряемой величины, могут быть рассчитаны в неименованных относительных единицах (или в именованных относительных единицах, например в процентах или в промилле). Формальное выражение относительной погрешности (Dотн) может быть представлено в виде:
Dотн = D/Q,
а при использовании именованной относительной погрешности, выраженной в процентах
Dотн = (D/Q) ´ 100 %.
где D – абсолютная погрешность измерения;
Q – истинное значение физической величины.
Либо, принимая во внимание незначительное для данного выражения различие между истинным значением физической величины Q и результатом ее измерения X, можно записать
Dотн»D/X,
а также
Dотн» (D/X) ´ 100 %.
Для характеристикисредств измерений иногда используют такой специфический класс относительных погрешностей, как приведенные погрешности средств измерений (Dприв), то есть отношение абсолютной погрешности к некоторой нормирующей величине (Qнорм)
Dприв = D /Qнорм,
В качестве нормирующей величины могут использоваться верхний предел измерений, либо больший из модулей пределов измерений, если нулевое значение находится внутри диапазона измерений, а верхний и нижний пределы не одинаковы по модулю, и другие величины, оговоренные ГОСТ 8.401.
Формы оценок погрешностей, используемые в метрологии и в технических измерениях, весьма разнообразны. Они включают качественные характеристики и количественные оценки погрешностей измерений.
Читайте: |
---|