Главная Основа метрологии



Основа метрологии

Классы точности средств измерений

Метрология - Основа метрологии

Класс точности – это обобщенная характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования, изложенных в предыдущих главах.

Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измеререний, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Для остальных средств измерений обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности

 

Нормирование метрологических характеристик средств измерений

Метрология - Основа метрологии

Под нормированием понимается установление границ на допустимые отклонения реальных метрологических характеристик средств измерений от их номинальных значений. Только посредством нормирования метрологических характеристик можно добиться их взаимозаменяемости и обеспечить единство измерений в государстве. Реальные значения метрологических характеристик определяют при изготовлении средств измерений и затем проверяют периодически во время эксплуатации. Если при этом хотя бы одна из метрологических характеристик выходит за установленные границы, то такое средство измерений либо подвергают регулировке, либо изымают из обращения [11].

Нормы на значения метрологических характеристик устанавливаются стандартами на отдельные виды средств измерения

 

Метрологические характеристики средств измерений

Метрология - Основа метрологии

Все средства измерений, независимо от их конкретного исполнения, обладают рядом общих свойств, необходимых для выполнения ими их функционального назначения. Технические характеристики, описывающие эти свойства и оказывающие влияние на результаты и на погрешности измерений, называются метрологическими характеристиками [9,10]. Перечень важнейших из них регламентируется ГОСТ “Нормируемые метрологические характеристики средств измерений”. Комплекс нормируемых метрологических характеристик устанавливается таким образом, чтобы с их помощью можно было оценить погрешность измерений, осуществляемых в известных рабочих условиях эксплуатации посредством отдельных средств измерений или совокупности средств измерений, например автоматических измерительных систем.

Одной из основных метрологических характеристик измерительных преобразователей является статическая характеристика преобразования (иначе называемая функцией преобразования или градуировочной характеристикой)

 

Критерии ничтожных погрешностей

Метрология - Основа метрологии

Не все частные погрешности косвенного измерения играют одинаковую роль в формировании итоговой погрешности результата. Так, например, если частные погрешности удовлетворяют неравенству

,


то ими можно пренебречь.

Эта формула в метрологии называется критерием ничтожных погрешностей, а сами погрешности, отвечающие условию (78), называются ничтожными или ничтожно малыми.

Использование критерия ничтожных погрешностей при решении задачи косвенных измерений позволяет найти те величины, повышение точности измерения которых позволит уменьшить суммарную погрешность результата. Очевидно, не имеет смысла повышать точность измерения тех величин, частные погрешности которых и без того ничтожно малы

 

Обработка результатов косвенных измерений

Метрология - Основа метрологии

При косвенных измерениях значение искомой величины получают на основании известной зависимости, связывающей ее с другими величинами, подвергаемыми прямым измерениям.

Вначале рассмотрим тот простейший случай, когда искомая величина определяется как сумма двух величин и :

(72)

Поскольку результаты прямых измерений величин и (после исключения систематических погрешностей) включают в себя некоторые случайные погрешности, то формулу косвенного измерения суммы можно переписать в виде

,

(73)


где – средние арифметические (или средние взвешенные), полученные при обработке результатов прямых измерений величин и , и – случайные погрешности средних, и – оценка истинного значения косвенно измеряемой величины и его случайная погрешность.

Из уравнения (73) непосредственно вытекает справедливость двух следующих равенств:

<\/a>") //-->