Главная Основа метрологии Обработка неравнорассеянных рядов наблюдений


Обработка неравнорассеянных рядов наблюдений

Метрология - Основа метрологии

В практике исследовательских работ часто встречаются ситуации, когда необходимо найти наиболее достоверное значение величины и оценить его возможные отклонения от истинного значения на основании измерений, проводимых разными наблюдателями с применением разнообразных измерительных средств и методов измерений в различных лабораториях или условиях внешней среды.

Ряды получающихся при этом результатов наблюдений называются неравнорассеянными, если оценки их дисперсий значительно отличаются друг от друга, а средние арифметические являются оценками одного и того же значения измеряемой величины.

Если средние неравнорассеянных рядов наблюдений мало отличаются друг от друга, то говорят о высокой воспроизводимости измерений, которая количественно характеризуется параметрами рассеивания результатов.

Рассмотрим некоторые случаи, приводящие к необходимости обработки результатов неравнорассеянных измерений:

1. Если при точных измерениях необходимо убедиться в отсутствии неисключенных систематических погрешностей, то измерения проводятся несколькими исследователями или группами исследователей. Если средние арифметические полученных рядов наблюдений незначительно отличаются друг от друга и ничто не указывает на наличие систематических погрешностей, то заманчиво объединить все полученные результаты и на основе их математической обработки получить более достоверные сведения об измеряемой величине.

2. Аналогичные измерения были выполнены в разных лабораториях различными методами и получены отличающиеся друг от друга результаты. Естественно и в этом случае, используя все имеющиеся данные, попытаться получить более достоверные значения измеряемых величин.

3. Измерения, относящиеся к образцовым мерам и измерительным приборам, часто повторяются через некоторое время. В конце концов накапливаются ряды наблюдений и возникает необходимость объединить их. Точность рядов наблюдений различна, с одной стороны, из-за того, что для впервые проводимых измерений характерно большее рассеивание результатов, а с другой стороны, из-за того, что с течением времени средства измерения стареют или заменяются новыми.

Во всех описанных ситуациях приходится прибегать к методам обработки результатов неравнорассеянных рядов наблюдений, задача которых в общем случае заключается в нахождении наиболее достоверного значения измеряемой величины и оценки воспроизводимости измерений.

Основой для расчета служат следующие данные:

– средние арифметические m рядов равнорассеянных результатов наблюдений постоянной физической величины Q; – среднеквадратические отклонения (или их оценки) результатов наблюдений в отдельных рядах; – числа наблюдений в каждом ряду; m – число рядов.

Если результаты наблюдений во всех рядах распределены нормально, то нормально распределены и все m средних арифметических (j=1, 2,…, m) с дисперсиями :

,


Q – истинное значение измеряемой величины (при условии, что систематические погрешности исключены).

Для практической обработки результатов неравнорассеянных рядов наблюдений необходимо ввести параметр вес отдельных средних арифметических:

.

Веса характеризуют степень нашего доверия к соответствующим рядам наблюдений. Чем больше число наблюдений в каждом данном ряду и чем меньше дисперсия результатов наблюдений, тем больше степень доверия к полученному при этом среднему арифметическому и с тем большим весом оно будет учтено при определении оценки истинного значения измеряемой величины

.

(67)

Иногда удобно пользоваться безразмерными весовыми коэффициентами

,

(68)


тогда выражение для среднего взвешенного приобретает простой вид

.

(69)

В соответствии со свойствами оценок максимального правдоподобия дисперсия среднего взвешенного должна равняться единице, деленной на математическое ожидание второй производной от логарифмической функции правдоподобия:

.

(70)

Отсюда следует, что дисперсия среднего взвешенного меньше дисперсии любого из исходных средних арифметических отдельных рядов наблюдений и поэтому при обработке неравнорассеянных рядов наблюдений точность измерений повышается.

Если теоретические дисперсии неизвестны, то пользуются их оценками , с помощью которых определяют веса или весовые коэффициенты.

При малом числе нормально распределенных результатов наблюдений пользуются распределением Стьюдента с числом степеней свободы

.

(71)

Если же об исходных распределениях нет никаких заслуживающих внимания данных, то на основании центральной предельной теоремы можно все-таки предполагать, что распределение среднего взвешенного нормально, поскольку оно является суммой большого числа случайных величин с конечными дисперсиями и математическими ожиданиями.

Пример. Тремя коллективами экспериментаторов с помощью различных методов измерения были получены следующие значения ускорения свободного падения (со среднеквадратическими отклонениями результатов измерений):

Весовые коэффициенты отдельных результатов вычислим по формуле (68):

Среднее взвешенное в соответствии с уравнением (69) составляет:


и его дисперсия (70)

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Учёные первооткрыватели:

Вислиценус, Йоханнес

News image

Йоханнес (Иоганн) Вислиценус (нем. Johannes Wislicenus; 24 июня 1835, Клейнехштедт, близ Галле — 5 декабря 1902, Лейпциг — немецкий химик-органик, ра...

Мандельброт, Бенуа

News image

Бенуа Мандельброт (фр. Benoît Mandelbrot; род. 20 ноября 1924, Варшава) — французский математик. Основатель и ведущий исследователь в области фрактальной ге...

Авторизация



Единицы измерений:

Гигабайт

News image

Гигабайт  (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартных (8-битным) байтов или 1000 мегабайтам. Неправильность названия Читая нижеизложенный те...

Единицы измерения количества информации

News image

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как од...

Ом

News image

Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает на...

Атмосфера (единица измерения)

News image

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана. Существуют две примерно равные др...

Открыватели:

Перельман, Григорий Яковлевич

News image

Григо рий Я ковлевич Перельма н (р. 13 июня 1966, Ленинград) — выдающийся российский математик, первым доказавший гипотезу Пуанкаре. Биография Григорий Яковлевич Перельман родился 13 июня 1966 го...

Универсальный конвертер
Conversion Type:
Quantity:

converts to:

Construction Unit converter provided by: EcoLog Homes

Интересные факты:

Таблица Менделеева

News image

В конце августа 1875 г. в кабинет акад. Вюрца входит его ученик, молодой французский химик Лекок-де-Буабодран. н долго не решается об...

О звуке

News image

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его не...

Эйнштейн и квантовая теория света

News image

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных ча...

Как происходит кристаллизация жидкости

News image

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ...

Атом и время

News image

Трудно себе представить более простое и вместе с тем более сложное понятие, чем время. Старая пословица говорит: «нет ничего в ми...

Ньютон и Марат о притяжении лучей света

News image

Что такое свет?— На этот вопрос Ньютон, очень много поработавший над изуче­нием световых явлений, отвечал так: свет — это поток бы...