Главная Основа метрологии Оценка с помощью интервалов


Оценка с помощью интервалов

Метрология - Основа метрологии

Смысл оценки параметров с помощью интервалов заключается в нахождении интервалов, называемых доверительными, между границами которых с определенными вероятностями (доверительными) находятся истинные значения оцениваемых параметров.

Вначале остановимся на определении доверительного интервала для среднего арифметического значения измеряемой величины. Предположим, что распределение результатов наблюдений нормально и известна дисперсия . Найдем вероятность попадания результата наблюдений в интервал . Согласно формуле (29)


Но


и, если систематические погрешности исключены ,

(34)

Это означает, что истинное значение Q измеряемой величины с доверительной вероятностью находится между границами доверительного интервала .

Половина длины доверительного интервала называется доверительной границей случайного отклонения результатов наблюдений, соответствующей доверительной вероятности Р. Для определения доверительной границы (при выполнении перечисленных условий) задаются доверительной вероятностью, например Р=0.95 или Р=0.995 и по формулам

(35)


определяют соответствующее значение интегральной функции нормированного нормального распределения. Затем по данным табл.П.3 приложения находят значение коэффициента и вычисляют доверительное отклонение . Проведение многократных наблюдений позволяет значительно сократить доверительный интервал. Действительно, если результаты наблюдений (i=l, 2,..., n) распределены нормально, то нормально распределены и величины , а значит, и среднее арифметическое , являющееся их суммой. Поэтому имеет место равенство

(36)


где определяется по заданной доверительной вероятности Р.

Полученный доверительный интервал, построенный с помощью среднего арифметического результатов n независимых повторных наблюдений, в раз короче интервала, вычисленного по результату одного наблюдения, хотя доверительная вероятность для них одинакова. Это говорит о том, что сходимость измерений растет пропорционально корню квадратному из числа наблюдений.

Половина длины нового доверительного интервала

(37)


называется доверительной границей погрешности результата измерений, а итог измерений записывается в виде

(38)

Теперь рассмотрим случай, когда распределение результатов наблюдений нормально, но их дисперсия неизвестна. В этих условиях пользуются отношением

(39)


называемым дробью Стьюдента. Входящие в нее величины и вычисляют на основании опытных данных; они представляют собой точечные оценки математического ожидания и среднеквадратического отклонения результатов наблюдений.

Плотность распределения этой дроби, впервые предсказанного Госсетом, писавшим под псевдонимом Стьюдент, выражается следующим уравнением:

(40)


где S(t, k) - плотность распределения Стьюдента. Величина k называется числом степеней свободы и равна n - 1. Вероятность того, что дробь Стьюдента в результате выполненных наблюдений примет некоторое значение в интервале , согласно выражению (8), вычисляется по формуле


или, поскольку S(t, k) является четной функцией аргумента t,


Подставив вместо дроби Стьюдента t ее выражение через и , получим окончательно

.

(41)

Величины , вычисленные по формулам (40) и (41), были табулированы Фишером для различных значений доверительной вероятности Р в пределах 0.10 - 0.99 при В табл.П.5 приведены значения для наиболее часто употребляемых доверительных вероятностей Р.

Таким образом, с помощью распределения Стьюдента по формуле (41) может быть найдена вероятность того, что отклонение среднего арифметического от истинного значения измеряемой величины не превышает , например и т.д. Итог измерений записывается в виде

(42)

Пример. По результатам пяти наблюдений была найдена длина стержня. Итог измерений составляет L=15.785 мм, =0.005 мм, причем существуют достаточно обоснованные предположения о том, что распределение результатов наблюдений было нормальным. Требуется оценить вероятность того, что истинное значение длины стержня отличается от среднего арифметического из пяти наблюдений не больше чем на 0.01 мм.

Из условия задачи следует, что имеются все основания для применения распределения Стьюдента.

Вычисляем значение дроби Стьюдента


и число степеней свободы

.
По данным табл.П.4 приложения находим значение доверительной вероятности для

и : .

Для =3 вероятность составляет


т.е несколько меньше 0.9973, как при нормальном распределении. Итог измерений удобно записать в виде

.

Для =1 доверительная вероятность составляет приблизительно 0.62, поэтому итог измерений можно представить также в виде

Пример. В условиях предыдущей задачи найти доверительную границу погрешности результата измерений для доверительной вероятности . По данным табл.П.5 при находим и, следовательно, доверительная граница:

мм.


Итог измерений:

При , а практически уже при распределение Стьюдента переходит в нормальное распределение и


где - интегральная функции нормированного нормального распределения.

В тех случаях, когда распределение случайных погрешностей не является нормальным, все же часто пользуются распределением Стьюдента с приближением, степень которого остается неизвестной.

Кроме того, на основании центральной предельной теоремы теории вероятностей можно утверждать, что при достаточно большом числе наблюдений распределение среднего арифметического как суммы случайных величин будет сколь угодно близким к нормальному. Тогда, заменяя дисперсию ее точечной оцен-кой [см.п.4.4. Нормальное распределение], можно для оценки доверительной гра-ницы погрешности результата воспользоваться равенством (35). Число наблюдений n, при котором это становится возможным, зависит, конечно, от распределения случайных погрешностей.

Соотношения (38) показывают, что итог измерения не есть одно определенное число. В результате измерений мы получаем лишь полосу значений измеряемой величины. Смысл итога измерений, например, L=20.00±0.05 заключается не в том, что L = 20.00, как для простоты счи-тают, а в том, что истинное значение лежит где-то в границах от 19.95 до 20.05. К тому же нахождение внутри границ имеет некоторую вероятность, меньшую, чем единица, и, следовательно, нахождение вне границ не исключено, хотя и может быть очень маловероятным.

Теперь найдем доверительные интервалы для дисперсии и среднеквадратического отклонения результатов наблюдений.

Если распределение результатов наблюдений нормально, то отношение

(43)


имеет так называемое - распределение Пирсона с степенями свободы. Его дифференциальная функция распределения описывается формулой

(44)

Кривые плотности - распределения при различных значениях k, вычисленные по формуле (44), представлены на рис.9.

Значения , соответствующие различным вероятностям Р того, что отношение (43) в данном опыте будет меньше , представлены в табл.П.6 приложения для различных вероятностей Р и чисел k степеней свободы.

Пользуясь этой таблицей, можно найти доверительный интервал для оценки дисперсии результатов наблюдений при заданной доверительной вероятности. Этот интервал строится таким образом, чтобы вероятность выхода дисперсии за его границы не превышала некоторой малой величины q, причем вероятности выхода за обе границы интервала были бы равны между собой и составляли соответственно q/2 (рис.10).

Границы и такого доверительного интервала находят из равенства

(45)

Теперь, зная границы доверительного интервала для отношения , запишем доверительный интервал для дисперсии:

(46)


Полученное равенство означает, что с вероятностью истинное значение среднеквадратического отклонения результатов наблюдений лежит в интервале (], границы которого равны

(47)

Пример. Даны результаты двадцати измерений длины мм детали (табл.3).

Таблица 3

18.305

18.306

18.306

18.309

18.308

18.309

18.313

18.308

18.312

18.310

18.305

18.307

18.309

18.303

18.307

18.309

18.304

18.308

18.308

18.310

В качестве оценки математического ожидания длины детали принимаем ее среднее арифметическое

мм.

Точечная оценка среднеквадратического отклонения результатов наблюдений составляет:

мм.


Приняв уровень доверительной вероятности , находим для числа степеней свободы в табл.П.6 приложения:

Границы доверительного интервала для среднеквадратического отклонения результатов наблюдений находим по формуле (47):


Полученные результаты говорят о том, что истинное значение среднеквадратического отклонения результатов наблюдений с вероятностью 0.90 лежит в интервале 0.0020 - 0.0034 мм.

В табл.П.6 приведены значения только при числах степеней свободы от 1 до 30. При k>30 можно пользоваться приближенной формулой



где определяется из условия по табл.П.3, в которой помещены значения интегральной функции нормированного нормального распределения.

Тогда границы доверительного интервала для среднеквадратического отклонения результатов наблюдений при доверительной вероятности вычисляются по формулам (47) при значениях , равных

(49)

Так, если в условиях предыдущей задачи среднеквадратическое отклонение определено на основании измерений, то для из табл.П.3 находим:


Величины при составляют:


Границы доверительного интервала:

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Учёные первооткрыватели:

Фурье, Жан Батист Жозеф

News image

Жан Батист Жозеф Фурье (фр. Jean Baptiste Joseph Fourier; 21 марта 1768, Осер, Франция — 16 мая 1830, Париж), французский ма...

Юнг, Томас

News image

Томас Юнг (англ. Thomas Young; 13 июня 1773, Милвертон, графство Сомерсет — 10 мая 1829, Лондон) — английский физик, врач, ас...

Авторизация



Единицы измерений:

Гигабайт

News image

Гигабайт  (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартных (8-битным) байтов или 1000 мегабайтам. Неправильность названия Читая нижеизложенный те...

Единицы измерения количества информации

News image

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как од...

Ом

News image

Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает на...

Атмосфера (единица измерения)

News image

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана. Существуют две примерно равные др...

Открыватели:

Гиббс, Джозайя Уиллард

News image

Джозайя Уиллард Гиббс (англ. Josiah Willard Gibbs; 1839—1903) — американский математик, физик и физикохимик, один из создателей векторного анализа, статистической физики, математической теории термодинамики, что во...

Универсальный конвертер
Conversion Type:
Quantity:

converts to:

Construction Unit converter provided by: EcoLog Homes

Интересные факты:

Таблица Менделеева

News image

В конце августа 1875 г. в кабинет акад. Вюрца входит его ученик, молодой французский химик Лекок-де-Буабодран. н долго не решается об...

О звуке

News image

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его не...

Эйнштейн и квантовая теория света

News image

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных ча...

Как происходит кристаллизация жидкости

News image

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ...

Атом и время

News image

Трудно себе представить более простое и вместе с тем более сложное понятие, чем время. Старая пословица говорит: «нет ничего в ми...

Ньютон и Марат о притяжении лучей света

News image

Что такое свет?— На этот вопрос Ньютон, очень много поработавший над изуче­нием световых явлений, отвечал так: свет — это поток бы...