МАТЕМАТИЧЕСКАЯ ОБРАБОТКА И ФОРМЫ ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
Метрология - Предметная область метрологии |
В ходе решения различных измерительных задач часто встречается необходимость математической обработки результатов измерений. В литературных источниках описание математической обработки результатов измерений часто сведено к статистической обработке некоторых абстрактных данных, свободных от систематической составляющей, что фактически отражает только одну сторону проблемы.
Анализ математической обработки результатов измерений позволяет выделить следующие типовые задачи:
- обработка результатов прямых многократных измерений одной и той же физической величины (серии измерений);
- расчет результатов косвенных измерений физической величины, в том числе при многократных прямых измерениях каждой из величин, входящих в формулу для расчета результатов косвенных измерений;
- обработка результатов измерений массива номинально одинаковых величин;
- обработка результатов измерений разных величин или изменяющейся физической величины.
Третий и четвертый случаи выходят за рамки чистой метрологии, поскольку относятся к более широкому классу задач, решаемых в ходе проведения экспериментальных исследований.
В метрологии для повышения достоверности и представительности результатов достаточно часто прибегают к многократным повторениям операции измерений одной и той же физической величины. При этом каждый единичный результат называют наблюдением при измерении, а результат измерений получают как интегральную оценку всего массива наблюдений. Поэтому в метрологии под математической обработкой результатов измерений традиционно понимают обработку результатов многократных прямых или косвенных измерений одной и той же физической величины.
Математическая обработка включает два принципиально разных направления: детерминированную обработку результатов измерений и статистическую обработку. Детерминированная математическая обработка результатов измерений в обязательном порядке применяется при получении результатов косвенных измерений. Например, для определения плотности некоторого вещества измеряют массу и объем одного и того же образца, после чего рассчитывают его плотность. В линейно-угловых измерениях часто рассчитывают угол по результатам измерений длин, межосевые расстояния отверстий по координатам осей и т.д.
При наличии систематических тенденций изменения результатов многократных измерений одной и той же величины также можно применить детерминированную математическую обработку результатов. В ходе этой обработки стремятся получить аналитическое описание систематической составляющей погрешности измерений. Такое описание позволяет исключить из дальнейшего рассмотрения переменные систематические погрешности. Результаты измерений, из которых исключены систематические погрешности, в метрологии называют «исправленными». Данные после полного или частичного «исправления» можно подвергать статистической обработке. Под «частичным исправлением» мы понимаем исключение переменной систематической составляющей погрешности. В таком случае математическая обработка позволяет получить неискаженные оценки вида распределения и его моментов, кроме оценки математического ожидания (она может оказаться смещенной из-за неисключенной постоянной составляющей систематической погрешности).
Задача обработки массива результатов измерений номинально одинаковых величин может появиться в ходе измерительного контроля неидеального объекта с множеством однородных физических величин, заданных одним параметром. Если расхождения результатов в предыдущих группах задач были обусловлены только погрешностями измерений, то в рассматриваемой задаче сами измеряемые величины могут существенно различаться. Например, шарик для подшипника качения не является идеальной сферой и имеет бесконечное число толщин, которые нормированы как один диаметральный размер. Еще более сложные задачи возникают при контроле партии однородной продукции по одному из параметров, при измерениях номинально одинаковых физических величин, многократно воспроизводимых в ходе экспериментальных исследований технологических процессов и т.д.
Последняя задача – обработка результатов измерений разных величин или изменяющейся физической величины – характерна для экспериментальных исследований, связанных с выявлением характера изменения исследуемой величины (параметра) при контролируемом изменении одного или нескольких аргументов. В метрологии такие задачи характерны для поверки и калибровки средств измерений, а также для метрологической аттестации средств измерений и методик выполнения измерений.
Отсутствие четкой постановки задачи обработки результатов измерений часто приводит к недоразумениям, в том числе к искажению получаемых результатов за счет перемешивания случайных (стохастических) результатов воспроизведения измеряемых величин и случайных погрешностей измерений этих величин. Дополнительные искажения могут внести неисключенные систематические составляющие, вне зависимости от источников их появления (возможны систематические изменения при многократном воспроизведении номинально одинаковых измеряемых величин и/или систематические погрешности измерений одной физической величины).
Статистическая обработка некоторых произвольных «исправленных» результатов (любых стохастически изменяющихся значений, будь то результаты измерений или результаты многократного воспроизведения номинально одинаковых величин) рассмотрена во многих литературных источниках. Корректно выполненная статистическая обработка «исправленных» результатов измерений отличается строгой постановкой задачи и соблюдением требований метрологической нормативной документации (ГОСТ 8.207-76, МИ 1317-86 и др.).
Читайте: |
---|