Главная Основа метрологии Описание случайных погрешностей с помощью функций распределения


Описание случайных погрешностей с помощью функций распределения

Метрология - Основа метрологии

Рассмотрим результат наблюдений Х за постоянной физической величиной Q как случайную величину, принимающую различные значения Z, в различных наблюдениях за ней. Значения будем называть результатами отдельных наблюдений.

Наиболее универсальный способ описания случайных величин заключается в отыскании их интегральных или дифференциальных функций распределения [1].

Под интегральной функцией распределения результатов наблю-дений понимается зависимость вероятности того, что результат наблюдения в i-м опыте окажется меньшим некоторого теку-щего значения х, от самой величины х:

(4)

Здесь и в дальнейшем большие буквы используются для обозначения случайных величин, а маленькие - значений, принимаемых случайными величинами. Поскольку функция распределения вероятности представляет собой вероятность, то она удовлетворяет следующим свойствам:

На рис.2 показаны примеры функций распределения вероятности.

Более наглядным является описание свойств результатов наблюдений и случайных погрешностей с помощью дифференциальной функции распределения, иначе называемой плотностью распределения вероятностей:

(5)

Физический смысл f(x) состоит в том, что произведение f(x)dx представляет вероятность попадания случайной величины Х в интервал от х до х + dx , т.е.

(6)

Свойства плотности распределения вероятности:

·  - вероятность достоверного события равна 1;
иными словами, площадь, заключенная между кривой дифференциальной функции распределения и осью абсцисс, равна единице;

·  - вероятность попадания случайной величины в интервал от до .

От дифференциальной функции распределения легко перейти к интегральной путем интегрирования:

(7)

Размерность плотности распределения вероятностей, как это следует из формулы (7), обратна размерности измеряемой величины, поскольку сама вероятность - величина безразмерная.

Используя понятия функций распределения, легко получить выражения для вероятностей того, что результат наблюдений Х или случайная погрешность примет при проведении измерения некоторое значение в интервале или .

В терминах интегральной функции распределения имеем:





т.е. вероятность попадания результата наблюдений или случайной погрешности в заданный интервал равна разности значений функции распределения на границах этого интервала.

Заменяя в полученных формулах интегральные функции распределения на соответствующие плотности распределения вероятностей согласно выражению (7), получим формулы для искомой вероятности в терминах дифференциальной функции распределения:

(8)

(9)

Таким образом, вероятность попадания результата наблюдения или случайной погрешности в заданный полуоткрытый интервал равна площади, ограниченной кривой распределения, осью абсцисс и перпендикулярами к ней на границах этого интервала. Необходимо отметить, что результаты наблюдений в значительной степени сконцентрированы вокруг истинного значения измеряемой величины и по мере приближения к нему элементы вероятности их появления возрастают. Это дает основание принять за оценку истинного значения измеряемой величины координату центра тяжести фигуры, образованной осью абсцисс и кривой распределения, и называемую математическим ожиданием результатов наблюдений:

(10)

В заключение можно дать более строгое определение постоян-ной систематической и случайной погрешностей.

Систематической постоянной погрешностью называется отклонение математического ожидания результатов наблюдений от истинного значения измеряемой величины:

(11)



а случайной погрешностью - разность между результатом единичного наблюдения и математическим ожиданием результатов

(12)



В этих обозначениях истинное значение измеряемой величины составляет

.

(13)

 


Читайте:


Добавить комментарий


Защитный код
Обновить

Учёные первооткрыватели:

Вёлер, Фридрих

News image

Фридрих Вёлер (нем. Friedrich Wöhler; 31 июля 1800, Эшерсхейм — 23 сентября 1882, Гёттинген) — немецкий химик, по образованию врач. Из...

Георгий Агрикола

News image

Георгий Агрикола (лат. Georgius Agricola, настоящее имя нем. Georg Pawer — Георг Павер, Пауэр или Бауэр, то есть крестьянин; 1494—1555) — ...

Авторизация



Единицы измерений:

Гигабайт

News image

Гигабайт  (Гбайт, Г, ГБ) — кратная единица измерения количества информации, равная 109 стандартных (8-битным) байтов или 1000 мегабайтам. Неправильность названия Читая нижеизложенный те...

Единицы измерения количества информации

News image

Единицы измерения информации служат для измерения объёма информации — величины, исчисляемой логарифмически. Это означает, что когда несколько объектов рассматриваются как од...

Ом

News image

Ом (обозначение: Ом, Ω) — единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает на...

Атмосфера (единица измерения)

News image

Атмосфера — внесистемная единица измерения давления, приблизительно равная атмосферному давлению на поверхности Земли на уровне Мирового океана. Существуют две примерно равные др...

Открыватели:

Бойль, Роберт

News image

Роберт Бойль (англ. Robert Boyle, ирл. Robaird Ó Bhaoill; 25 января 1627 — 30 декабря 1691) — физик, химик и богослов, седьмой сын Ричарда Бойля, гр...

Универсальный конвертер
Conversion Type:
Quantity:

converts to:

Construction Unit converter provided by: EcoLog Homes

Интересные факты:

Таблица Менделеева

News image

В конце августа 1875 г. в кабинет акад. Вюрца входит его ученик, молодой французский химик Лекок-де-Буабодран. н долго не решается об...

О звуке

News image

Звук с давних пор считался одним из самых загадочных явлений природы. В самом деле, что порождает звук? Что заставляет его не...

Эйнштейн и квантовая теория света

News image

Эйнштейн является одним из основателей новой, квантовой теории света и основателем теории относительности. Согласно квантовой теории свет представляет поток своеобразных ча...

Как происходит кристаллизация жидкости

News image

В настоящее время можно считать твердо установленным, что жидкость может затвердевать после ее охлаждения до температуры плавления только при наличии в ...

Атом и время

News image

Трудно себе представить более простое и вместе с тем более сложное понятие, чем время. Старая пословица говорит: «нет ничего в ми...

Ньютон и Марат о притяжении лучей света

News image

Что такое свет?— На этот вопрос Ньютон, очень много поработавший над изуче­нием световых явлений, отвечал так: свет — это поток бы...